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The topic of cloud radiative forcing associated with the atmospheric
aerosol has been the focus of intense scrutiny for decades. The
enormity of the problem is reflected in the need to understand as-
pects such as aerosol composition, optical properties, cloud con-
densation, and ice nucleation potential, along with the global
distribution of these properties, controlled by emissions, transport,
transformation, and sinks. Equally daunting is that clouds them-
selves are complex, turbulent, microphysical entities and, by their
very nature, ephemeral and hard to predict. Atmospheric general
circulation models represent aerosol−cloud interactions at ever-
increasing levels of detail, but these models lack the resolution to
represent clouds and aerosol−cloud interactions adequately. There
is a dearth of observational constraints on aerosol−cloud interac-
tions. We develop a conceptual approach to systematically constrain
the aerosol−cloud radiative effect in shallow clouds through a com-
bination of routine process modeling and satellite and surface-
based shortwave radiation measurements. We heed the call to merge
Darwinian and Newtonian strategies by balancing microphysical
detail with scaling and emergent properties of the aerosol−cloud
radiation system.
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The climate system, with its couplings between land surface,
vegetation, ocean, cryosphere, and atmosphere, is an ex-

traordinarily complex system that is under intensive scrutiny for
the purposes of climate analysis and prediction. The atmospheric
aerosol and its interaction with clouds is a poorly quantified
component of the climate system and is the focus of the current
study. The aerosol comprises suspended particles that derive from
the oceans, land surface, volcanoes, and anthropogenic activities.
The difficulty in quantifying climate forcing by the aerosol ema-
nates partly from the complexity in the aerosol itself, and partly
from the fact that its influence on clouds requires detailed un-
derstanding of clouds and cloud feedbacks at a range of spatio-
temporal scales. Untangling the multiple cloud responses that
occur as a result of aerosol perturbations is particularly difficult
(1). As one example, consider the influence of the aerosol on
clouds and precipitation. Assuming no change in condensed water,
the aerosol, by acting as nucleation sites for droplets, might gen-
erate smaller droplets, more reflective clouds (2), and reduced
precipitation (3). However, through a multitude of complex and
contingent pathways, aerosol-perturbed clouds sometimes appear
to have similar reflectance because brightening is offset by re-
ductions in cloud water, a fundamental property controlling cloud
reflectance. On short timescales (hours), the aerosol tends to re-
duce precipitation in shallow, liquid-only clouds, but this may be
offset over longer periods (multiple days) (4). Deep, mixed-phase
convective clouds present even more complex pathways for gen-
eration of precipitation, and even more contingencies. The aerosol
appears to change the distribution and intensity of surface rain
from deep convective clouds (5); however, longer timescale drivers
(weeks to months) associated with radiative heating and long-term

modification to the surface fluxes by the aerosol could be equally if
not more important (6, 7).

Paradigms in Pursuit of Quantification of the Cloud
Radiative Effect
The immense complexity of the aerosol itself, the sensitivity of
clouds to both meteorological controls and the aerosol, and the
covariability of rapidly changing clouds and aerosol present a
particularly challenging problem. As in other studies of complex
systems, researchers tend to separate based on academic tradi-
tion or discipline into those with a “Newtonian” outlook and those
who take a “Darwinian” approach. To paraphrase Harte (8), the
Newtonian stresses, among others, fundamental physical laws, a
search for patterns, simple models, and predictive capability based
on initial conditions and deterministic laws of physics. In con-
trast, the Darwinian is more cognizant of the system complexity
and contingencies, opposes simple models, and addresses smaller,
more manageable, or unique pieces of the problem. Harte has
argued eloquently for a synthesis of these two approaches for Earth
system science. We will attempt to argue the same as a means of
advancing our understanding of, and ability to quantify, the cloud
radiative effect (CRE). [CRE refers to the difference between “all-
sky” (cloudy + clear sky) and “clear-sky” radiation at a given time.
In contrast, “radiative forcing” refers to present-day minus pre-
industrial influence of a given constituent.] Threads of this thinking
date even earlier, to Karl Popper’s work on physical determinism
and human behavior, eloquently presented in an essay entitled “Of
Clocks and Clouds” (9) in which he describes complex systems in
terms of either “clock-like,” predictable systems based on funda-
mental rules or “cloud-like” systems characterized by “fuzziness”
and unpredictability. Our (open) aerosol−cloud system is, by
definition, nebulous and fuzzy, but is nevertheless based on
fundamental physics. As in Popper’s world, it is characterized by
neither pure physical determinism nor pure chaos. Describing it
fully therefore requires a synergy of these approaches. In Pop-
per’s words “What we need for understanding rational human
behaviour. . . is something intermediate in character between
perfect chance and perfect determinism; something intermediate
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between perfect clouds and perfect clocks.” We argue that the
same is true for complex physical systems.
Our motivation is twofold: (i) to improve our understanding of

cloud-controlling parameters and cloud albedo-controlling pa-
rameters with a goal of improving representation of these pro-
cesses in atmospheric general circulation models (AGCMs) and
(ii) to enable observational quantification of the aerosol−cloud
radiative effect with a focus on process-level understanding. This
paper will offer a retrospective of some older approaches to
quantification, together with some new ones, to illustrate how the
community might reorganize how it thinks about the aerosol−cloud
problem. The ideas herein draw on many in the published liter-
ature, so this work stresses methodology rather than novelty.
To present our ideas, we deal solely with warm (liquid water)

clouds, whose dominant influence on radiation is in the short-
wave (SW), and for which there is abundant qualitative evidence
but insufficient quantification of an aerosol influence.

Examples
Within subdisciplines, researchers have traditionally focused on
fundamental understanding by addressing parts of the problem.
However, the interactions among these components and the
implications for climate-scale phenomena lend themselves to
broader consideration of the environment in which the clouds
evolve (dynamics), and the couplings between dynamics, aerosol/
cloud microphysics, and radiation. Twomey’s (2) landmark paper
on aerosol brightening of clouds drove a generation of scientists
to try to quantify cloud brightening, whereas, today, the focus has
shifted to the dynamical adjustments of the system that occur in
response to such brightening, and whether they amplify (3) or
diminish (1, 10) such brightening.
Just a few decades ago, it was common to use a cloud model to

study a single cloud cell or a subset of cloud processes (Dar-
winian), whereas, today, one can simulate a field of clouds based
on the same fundamental physics and attempt to project results
onto other cloud systems (Newtonian). However, in adding more
physics and process interactions, the system rapidly becomes
complex enough that the Newtonian approach falls short of be-
ing fully explanatory or able to untangle all causal relationships.
The “tug of war” between fundamental physics projected to the
system and system-wide behavior that has driven detailed anal-
ysis of subcomponents of the system can be exemplified in the
following. Suppose one would like to quantify the relationship
between planetary albedo (R) and aerosol emissions (E). An
equation for this relationship can be broken down via the Chain
Rule (11) as

ΔR=R
d lnR
d ln τ

d ln τ
d lnNd

d lnNd

d ln CCN
d ln CCN
d lnE

Δ lnE [1]

where τ is cloud optical depth, Nd is drop concentration, and
CCN is cloud condensation nucleus concentration. [This equa-
tion assumes a cloudy column; i.e., there is no influence of the
aerosol on cloud fraction. While this is unrealistic, the equation
is simply used to expound an idea (presented below) rather than
for purposes of quantification.] Depending on discipline and
expertise, the community has coalesced around quantifying indi-
vidual components of this expansion, both in models, as a means
of identifying differences between model representations of said
components in a present-day minus preindustrial sense, and
through observations, where the terms are assessed based on
present-day measurements. [The relationship between radiative
forcing and effect could be addressed with a kernel method (12).
The assumption that radiative forcing calculated based on pre-
sent-day aerosol−cloud interactions is equivalent to forcing
based on present-day minus pre-industrial aerosol might result

in a low bias in forcing (13).] Addressing any given component of
Eq. 1 requires further expansion, e.g.,

d ln τ
d lnNd

=
1
3

�
1+ 2

d lnL
d lnNd

+
d ln k
d lnNd

+ 3
d lnH
d lnNd

�
[2]

where L is liquid water path, k represents drop size distribution
breadth, and H is cloud depth. Like the progressive unpeeling of
layers of an onion, these terms themselves require further
expansion and quantification. Unfortunately, the nature of our
measurement systems means that there are large uncertainties
associated with the terms in Eq. 2, in magnitude and even in sign.
Physical retrievals of the various parameters are often fraught
with instrumental or measurement error and assumptions. Indi-
vidual terms are poorly constrained, and errors compound to
yield great uncertainty. For example, in ref. 14, the authors state
that although their data generally conform to the expansion in
Eq. 2 quite well, they do so because of compensating errors in
individual terms. In addition, the sometimes disparate measure-
ment scales, and scales of aggregation associated with different
platforms or instruments, can further confound quantification
(15). Given our current ability to quantify through observations
the components in Eqs. 1 and 2, if Eq. 1 or some subcomponent
like Eq. 2 were to match a proposed theory, how confident could
one be in the suitability of that theory?
An alternative approach is to shift attention to observations of

system-wide variables that are more closely related to CRE, and
for which uncertainties are better known. One example is the re-
lationship between scene albedo A (cloudy plus clear sky portions)
and cloud fraction fc, expressed as (16, 17)

A= Acfc +Asð1� fcÞ, [3]

where Ac is cloud albedo and As is surface albedo. Ac is itself a
function of τ, and therefore L and Nd. Approximately linear rela-
tionships between MODIS (Moderate Resolution Imaging Spectro-
radiometer)-derived fc and CERES (Clouds and the Earth’s Radiant
Energy System)-derived A in multiple marine stratocumulus loca-
tions have been found when averaging over 2.5° × 2.5° and 1-mo
periods (18). (Based on Eq. 3, linearity suggests an independence of
Ac and fc.) Regardless of the exact form, the (A, fc) relationship has
distinct advantages: It can be addressed with fewer measurements
than the Chain Rule expansions, measurement error and uncer-
tainty are more directly linked to CRE, measurements can be
made from space and from the ground (19, 20), and it captures
important underlying physics (21, 22). It is currently used as a
means of diagnosing AGCM performance (17, 18) but, as we will
argue below, could be applied to process models as well.
The (A, fc) relationship therefore provides a key element of the

merged Newtonian−Darwinian approach, i.e., it is an expression
of scaling (Harte’s “search for patterns and laws”). However, does
it exhibit another very desirable property, namely self-similarity or
scale-independence, e.g., does the (A, fc) relationship vary with
spatial or temporal averaging scale? Does it vary across cloud re-
gimes? If so, can one directly trace the variability to physical pro-
cesses? Some of these themes will be addressed, albeit briefly, below.
One might argue that in examining relationships such as (A, fc)

rather than (τ, Nd), we are simply shifting the unknown(s) else-
where. We counter that assessing uncertainties in a higher-level
relationship like (A, fc) is more productive than getting entangled
in similar uncertainties in lower-order relationships. Are we ab-
rogating our fundamental intellectual need or mandate to un-
derstand and predict all subcomponents of the system? We argue
that the broader view, in combination with an appropriate bal-
ance of process-level understanding, has been particularly pro-
ductive in other fields. As an illustration, consider the study of
“emergence,” another nexus of the Newtonian and Darwinian ap-
proaches. Complex pattern formation sometimes emerges from
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simple deterministic interactions between components of the sys-
tem. Atmospheric Rayleigh−Bénard convection is one such ex-
ample that links fundamental process to pattern. Emergence, or
pattern formation, provides useful constraints on simulation of
deterministic systems and opens rich opportunity for the pursuit of
understanding pattern structure and its evolution.
This leads to yet another aspect of Newtonian/Darwinian merg-

ing, namely the development of simple, falsifiable models that can
be tested in a range of conditions and locales. By illustrating the
limits of physical determinism, the system of three coupled dif-
ferential equations of ref. 23 has been particularly enlightening.
This search for simplicity runs counter to the current trend toward
ever-increasing model complexity—often to the point of attempt-
ing to represent complex interactions in models that do not
adequately represent the individual components, let alone their
interaction. Mixed layer models (24) and simple budget models
(25) prove to be very useful, and are able, in some cases, to re-
produce temporal (26) and spatial (27) emergence. By focusing
on spatiotemporal patterns, the study of emergence naturally
lends itself to simple models. Although this topic is of great in-
terest, it will not be developed here.
Here we will attempt to balance Newtonian determinism and

Darwinian (real-world system) complexity, particularly with an
eye to scaling properties. The examples to be presented focus on
albedo and radiative effect; precipitation is only discussed to the
extent that it affects albedo. Simple models or computationally

efficient models will be alluded to, where appropriate. We start
with a set of idealized numerical simulations using a cloud-
resolving model (CRM) and a large eddy simulation (LES), and
progress to discussion of a more ambitious project connected
tightly to real-world simulation and observation.

Results
Simulations. We use a numerical model, the System for Atmo-
spheric Modeling (SAM) (28). To explore the robustness of the
(A, fc) relationship, we apply it to a variety of cases, including
nocturnal marine stratocumulus (both closed and open cell), stra-
tocumulus evolving with the diurnal cycle, and a stratocumulus to
cumulus transition case. The simulations are separated into “noc-
turnal” and “diurnal” and described below.
Marine stratocumulus: Nocturnal simulations. These simulations focus
on the sensitivity of cloud albedo Ac, cloud fraction fc, and liquid
water path L to the initial conditions; i.e., they directly address
the question of CRE-controlling parameters without considering
CRE itself. This is clearly unrealistic but will be used to make
some salient points. The model output comprises 220 simula-
tions of marine stratocumulus cloud systems. SAM is initiated
with different initial conditions, described in terms of six key
parameters: total mixing ratio qt, liquid water potential temper-
ature θl, the depth of the mixed layer Hmix over which qt and θl
are well mixed, qt and θl jumps at the inversion, Δqt and Δθl,
and aerosol concentration Na. The respective ranges of these

Fig. 1. Scatterplot of domain mean cloud albedo Ac (sum of Ac normalized by number of columns in domain) as a function of input conditions (A) qt, (B) θl,
(C) Δqt, (D) Δθl, (E) Hmix, and (F) Na, and as a function of (G) L and (H) fc . Points are hourly averages over the last hour of a 6-h simulation. Ac is calculated
based on cloud optical depth τ (32). Points are colored by L. In F, the slopes of the dashed lines indicate albedo susceptibility for given L. Slopes are steeper at
small Nd and flatten with increasing Nd.
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parameters are 6.5 < qt < 10.5 g·kg−1, 284 < θl < 294 K, −10 <
Δqt < −6 g·kg−1, 6 < Δθl < 10 K, 500 < Hmix < 1,300 m, and
30 < Na < 500 cm−3. Only those initial profiles sampled from
the qt, θl, Hmix parameter space with L in the range 30–200 g·m−2

and cloud base in the range 250–1,100 m were selected
for simulation. The parts of the parameter space excluded,
which are dependent on a 3D combination of qt, θl, and Hmix,
are areas/combinations where the simulation would be very
unlikely to produce the cloud type of interest. Hence, we do have
some predetermined correlation between input parameters qt, θl,
and Hmix. The domain is 40 km × 40 km × 1.6 km, the grid volume
is 200 m × 200 m × 10 m.
We perform two groups of simulations, each with a different

method of sampling the initial conditions from the six-dimensional
parameter uncertainty space that defines the parameter ranges and
constraints. Each group of simulations is allowed to sample from
the same ranges of the input parameters qt, θl, Hmix, Δqt, Δθl, and
Na. The first group of 100 simulations (set 1) was sampled ran-
domly from a six-dimensional grid covering the meteorological and
aerosol parameter space. About 40 of the 100 simulations apply the
full range of Na at fixed meteorology. The second group of 120
simulations (set 2) was sampled using the maximin Latin hypercube
design algorithm (29). It maximizes the minimum distance between
selected points to ensure optimal coverage of the multidimensional
parameter space, which is difficult to obtain manually. Hence, a
wider area of the multidimensional parameter space is covered in
set 2 than in set 1. Unlike set 1, set 2 has no predetermined cor-
relation between the meteorological drivers (qt, θl, Hmix, Δqt, and
Δθl,) and Na.
Thus, the manner in which the six input parameters covary

differs between the two sets. Because meteorology and aerosol
typically covary in somewhat predictable ways, neither of the
methods is a realistic sampling of what the atmosphere presents

(except for the realistic range over which the parameters are
varied), but, as will be demonstrated below, they serve our
purpose well.
Marine stratocumulus and stratocumulus-to-trade cumulus transition: Diurnal
simulations.Here the focus is on CRE, A, and fc. A random sample
of 15 of the 220 nocturnal simulations are repeated for a period
of 10 h with a 04:00 local time start time and a diurnal cycle of
radiation. Radiative calculations are applied in each model col-
umn. In addition, a composite sounding based on NE Pacific
Lagrangian trajectories (30) is used to simulate a transition case
in the presence of (absorbing) smoke aerosol residing some dis-
tance above, and later entrained into cloud. Forcings, including a
gradual increase in sea surface temperature, are applied (30). For
this transition case, the SW heating associated with the aerosol is
also coupled to dynamics (31). A solid stratocumulus to broken
cumulus transition is simulated over the course of 3 d; initial smoke
conditions are either low Na (aerosol optical depth τa = 0.06) or
high Na (τa = 0.50). The asymmetry parameter is 0.67, and the
single scattering albedo ωo is 0.80 (at 0.5 μm), representing smoke
mixed with hygroscopic material (31). Such a low value of ωo is
associated with fresh smoke and is perhaps unrealistic. It does,
however, serve to test the sensitivity of the (A, fc, CRE) phase space
to aerosol absorption. The model is run on a 12 km × 12 km × 4 km
domain with a grid volume of 50 m × 50 m × 10 m.

Simulation Results.
Marine stratocumulus: Nocturnal simulations. A scatterplot of the
domain mean cloud albedo Ac as a function of the six input
parameters is shown in Fig. 1 for set 1. Each point represents an
hourly average over hour 6 of the simulation, and is colored by L.
Ac is calculated from τ using a two-stream approximation (32).
Ignoring the coloring by L, one immediately sees that there is no
simple dependence of Ac on individual parameters. Sorting by L
does bring out some distinct patterns, which is particularly clear
for Ac vs. Na. This is an expression of the albedo susceptibility
relationship, calculated at constant L: Sa = ∂Ac/∂Nd = Ac(1 − Ac)/
3Nd (33); slopes for given L in Fig. 1F are maximum at small Nd
and Ac ≈ 0.5. Ac is also shown to depend strongly on L and fc (Fig.
1 G and H). A partial multivariate linear correlation of Ac vs. the
six input parameters (i.e., a correlation between Ac and any one
of the six parameters with the effects of the others removed)
produces correlation coefficients of 0.44 (qt), −0.56 (θl), 0.58 (Hmix),
−0.32 (Δqt), 0.35(Δθl), and 0.67 (ln Na). Thus, all input parameters
contribute significantly to Ac.
We now calculate A as in Eq. 3 with As = 0.08 (for ocean),

and Ac and fc based on τ > 0.2 (chosen for consistency with 3D
calculations in Fig. 2). Points are domain average values,
colored by input Na. One sees (Fig. 2) a weak but distinct
separation of colors, indicating that, for given fc, higher Na
tends to result in higher A. Fig. 2 also includes calculations
based on 3D radiative transfer modeling of four individual
snapshots of cloud fields from an independent simulation
(four red “+” signs) (34). The location of these points is close
to those from the two-stream approximation, suggesting that
details of the A calculation appear to have a small influence.
There is, however, a distinct sensitivity to the definition of fc:
the red “+” signs calculate fc based on τ > 0.2, whereas the
black “+” sign calculates fc for τ > 0.1.
A line approximating monthly mean 2.5° × 2.5° results for a

MODIS Terra measurement from Californian stratocumulus
(18) is superimposed on Fig. 2 for reference. Except for the
bounding by As at fc = 0 and by Ac at fc = 1, there is no a priori
reason why the relationship based on the small spatiotemporal
averaging in this work should behave similarly to that from the
large spatiotemporal averaging as in ref. 18; differences between
the CRM output and the remote sensing data are likely related,
among others, to the averaging scale, covariability in meteorol-
ogy and aerosol, and definition of fc (Fig. S1). The relative

Fig. 2. Mean scene albedo A (cloudy plus clear sky) calculated based on Eq.
3 (with As = 0.08) as a function of fc (defined based on τ > 0.2). Points are
colored by Na. The aerosol influences both the cloud and surface albedo. A
weak but distinct influence of Na on A can be seen. Points associated with
higher Na tend to be at higher A and higher fc. The dotted line is an ap-
proximation to the relationship in ref. 18 for 2.5° × 2.5° monthly average
data from Californian stratocumulus (MODIS and CERES on Terra). The red
“+” signs (not colored by Na) are from 3D radiative transfer calculations for
four cloud fields associated with a closed-cell stratocumulus transitioning to
the open-cell state (34), also with fc defined based on τ > 0.2. The black “+”
sign is a recalculation of the red “+” to its left where a weaker condition (τ >
0.1) is applied to the calculation of fc.
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robustness of the (A, fc) relationship reinforces our point
that well-defined higher-level relationships are preferred
over uncertain, poorly constrained lower-level ones. Efforts
to understand the connection between the form of the (A, fc)
relationship and its controlling factors would therefore
seem profitable.
Figures for set 2 show similar behavior for the scatter plots in

terms of the individual inputs (Fig. 3). The robust relationships
are again reflected in Ac vs. L and fc. Applying Eq. 3, the A vs. fc
relationship is highlighted again (Fig. 4), this time with fc and Ac
based on τ > 1. Here, there is almost no discernible influence of
Na on A at constant fc, regardless of how fc and Ac are defined
(see SI Text and Fig. S2). Moreover, both high and low Na are
intermingled over a range of A and fc. Although these two sets of
simulations sample from the same range of initial conditions,
they differ (i) in the manner in which the six input parameters
are sampled and (ii) in the parameter space covered by the
sampling. Unlike set 1, there is almost no repetition of meteo-
rological conditions defined by the input combinations in the set
2 simulations. This brings out an important point: The influence
of the aerosol on albedo at constant fc depends on the covari-
ability of meteorology and aerosol. This is a result supported by
observational studies that have underscored the difficulty in
separating meteorological and aerosol influences on A because
variability in A is overwhelmed by variability in fc and L (21). The
(A, fc) phase space is a useful way of demonstrating this, and
there is a clear need for realism in the sampling of the covarying
initial conditions if we are to discern aerosol influences. The fre-
quently used modeling strategy where Na is varied for given

meteorology should not be applied, and demonstration of an
aerosol response in this framework is not an indication of realistic
response, unless, of course, nature presents such conditions.
It is worth noting that low Na is often associated with pre-

cipitation-induced cloud breakup. Thus, to the extent that Na
controls precipitation in these systems, it has the potential to
strongly affect A and fc by moving points toward the lower left of
the (A, fc) trace. Here too, differences between set 1 and set 2 are
distinct; in Fig. 2, points with low Na and low fc are more com-
mon than in Fig. 4.
Marine stratocumulus and stratocumulus-to-trade cumulus transition:
Diurnal simulations. These simulations include part of the diurnal
cycle so that the broadband SW CRE can be calculated over the
course of 10 h for the stratocumulus simulations and 3 d for
the transition cases. To simplify analysis, we calculate relative
CRE (rCRE),

rCRE  =  1−
Fsw;all

Fsw;clr
[4]

where Fsw denotes net SW surface fluxes, all denotes all sky, and
clr denotes clear sky. Measurement of rCRE was developed for
surface-based measurements (19) and, by normalizing, focuses
on clouds, without the confounding effects of solar angle or
surface albedo.
Here rCRE calculations are performed based on Eq. 4 during

daylight hours when SW fluxes are calculated. The rCRE is
shown as a function of fc (based on τ > 1; Fig. 5A) and scene
albedo A (Fig. 5B) for the composite of 15 stratocumulus (1-h

Fig. 3. As in Fig. 1 but for set 2.
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snapshots) and 2 transition simulations (low τa and high τa), also
at hourly intervals. Such analyses show the relative importance of
intrinsic factors (A) or extrinsic factors (fc) in controlling rCRE
(20, 22). It is immediately clear that the simulations tend to
follow a fairly robust relationship, with rCRE, as expected, in-
creasing progressively with increasing fc and A. The low τa transition
case output (filled circles) follows the stratocumulus (filled squares)
cases quite well despite the large differences in initial soundings and
system evolution. The points from the high τa smoky transition case
tend to lie below the main branch of stratocumulus points (Fig. 5B,
diamonds); at low fc, they illustrate the brightening of the dark
ocean surface by the aerosol. The few scattered (diamond) points at
the very highest rCRE and A are associated with smoke-influenced
clouds with very high Na and Nd.
Model output from Fig. 5 A and B, this time in (A, fc) phase

space with points colored by rCRE (Fig. 5C), again shows the
characteristic path in (A, fc) space. Note that points with similar
A and fc may have significantly different rCRE because they are
associated with different cloud and aerosol conditions. Although
we make no claims on the universality of relationships such as
those in Fig. 5, the robustness suggests that the (A, fc) phase
space is a useful one for exploring controls on rCRE (or CRE)
and linking physical processes and assumptions made in the
analysis to rCRE patterns.

A Path Forward
The Primacy of Initial Conditions. Results emphasize the influence
of the covariability (in six-dimensional space) of initial conditions/
cloud-controlling parameters on key cloud field attributes. Two
sampling strategies from the same range of initial conditions
produce different indications of the role of the aerosol. This
leads to the question of how the system might respond to a
naturally occurring covariability of the inputs. We propose to
address this question by repeating large numbers of LES, CRM,
and coarser mesh model simulations in specified cloud regimes
using initial conditions from routine observations (or observa-
tionally constrained model output), as in ref. 35, but also including
aerosol information. Initial conditions could be based on radio-
sondes or from reanalysis, daily Numerical Weather Prediction
(NWP) derived soundings, or variational analysis (36). Model
output that successfully reproduces a desired set of observed
quantities, which should include surface SW radiation, L, fc, and

Ac, can then be tied to the observed initial meteorological
conditions, Na, and surface latent and sensible heat fluxes.
[“Successful” is defined ad hoc. For a radiation-centric study, a
successful simulation would need to compare sufficiently well to

Fig. 4. As in Fig. 2 but for set 2. Here fc and Ac are calculated based on τ > 1.
Note the absence of a clear aerosol influence on A and fc.

A

B

C

Fig. 5. The rCRE calculations in (albedo A, fc) space for 15 stratocumulus
and 2 stratocumulus-to-trade-cumulus transition simulations: (A) rCRE vs. fc;
(B) rCRE vs. albedo A, and (C) albedo A vs. fc. Squares, stratocumulus; circles,
low smoke τa transition case; diamonds, high smoke τa transition case. Points
represent 1-h snapshots. Here fc and Ac are calculated based on τ > 1.
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measurements of, inter alia, surface SW radiation, τ, fc, and L. As
in ref. 37, the unsuccessful simulations provide opportunity for
model improvement (both LES and SCM).] Given that observed
profiles will differ from the idealized mixed layer profiles used
here, classification of observed profiles in terms of key charac-
teristics will likely be necessary. A large number of simulations will
then allow one to explore the relationship between input profiles
and CRE, Ac, fc, L, and Na.
Analyses of successful model output in (CRE, A, fc) space will

allow a methodical, process-based link to observed environmental
and aerosol conditions with a hierarchy of models but, impor-
tantly, will include small-scale process models. Because individual
microphysical and macrophysical responses to the aerosol can also
be measured from the surface and from satellites, there is benefit
in examining, in parallel, individual response terms dlnX/dlnNa
(e.g., Eq. 2) and comparing model output and observations at
multiple levels. Agreement at multiple levels will provide further
confidence in the fidelity of simulations. Nevertheless, we urge
appropriate balance in these higher- and lower-order efforts, given
the measurement uncertainties and imperfect model physics.
Routine LES has been demonstrated for improving single-

column model (SCM) physics, thus providing a direct path to
improving AGCM physics (37). The US Department of Energy’s
Atmospheric Radiation Measurement Program will soon embark
on a pilot study to perform routine LES at the Southern Great
Plains site in Oklahoma (38), and a European project (High
Definition Clouds and Precipitation for Climate Prediction;
www.hdcp2.eu/) has similar goals of routine, integrated modeling
and observation. In addition to SCM simulations, AGCMs could
directly benefit if they are initialized with the same inputs and
run in hindcast mode over short periods of time (39). A sche-
matic of the approach is shown in Fig. 6. This effort should be
performed in key cloud regimes such as stratocumulus, cumulus,
and the stratocumulus-to-cumulus transition. For deep convec-
tive clouds, CRE calculations require other considerations.

Emulators. LES, and even CRM, is computationally expensive, so
pursuit of a physically or perhaps statistically based simpler model
with a limited number of free parameters is of great interest. These
simpler representations would be designed to emulate LES or
CRM results and explain the sensitivities of key outputs such as Ac,

fc, CRE, and L to the initial conditions. Simplified budget models
and statistically based emulators (40, 41) have been proposed. The
two aforementioned studies assessed the uncertainty of key model
outputs with respect to uncertainty in model parameters repre-
senting physical processes. Rather than assess sensitivity to model
parameters, here the emulator will be used to relate variations in A,
fc, and CRE to meteorological and aerosol drivers. The construc-
tion of an emulator requires optimal coverage of the parameter
space in the sample of model runs using, e.g., the maximin Latin
hypercube approach (hence the use of this sampling method for set
2; Figs. 3 and 4). These 120 simulations are currently being used to
construct emulators, and are showing promise. The greatest chal-
lenge is the sometimes steep local slope in six-dimensional input
parameter space, meaning that small changes in input parameters
have a large influence on the outcome. A successful emulator would
ultimately use as input the observed covarying initial conditions and
would, at minimal computational expense, allow a much denser
sampling of parameter space than the LES or CRM. Emulators
would have to be reconstructed for different cloud regimes. To the
extent that this experiment is successful, emulation could serve as a
very useful method for relating initial conditions to CRE, A, and fc
outcomes in different cloud regimes. Moreover, the output pa-
rameters are all measureable, which means that the emulator could
be tested against observations in parts of the input space not used
to train the emulators.

Summary
The proposed analysis framework combines our penchant for
Newtonian determinism in the form of cloud system modeling,
that resolves key physics, addresses scale dependence, seeks
emergent phenomena, and pursues simple models, with the
Darwinian recognition that our system is fundamentally unpredict-
able and cannot be addressed purely deterministically. The approach
shifts the balance of effort from low-order observational constraints,
that are highly scale-dependent and suffer from instrumental or
retrieval error, toward constraints on higher-order parameters
that are fundamental to the CRE. The latter, expressed here as
an (A, fc) relationship and CRE = f(A, fc), are not without un-
certainty, but, by addressing them at this higher level, we avoid
excessive compounding or unwanted offsetting of errors.

Fig. 6. Schematic showing systematic comparison
between surface and/or satellite remote sensing of
key measurements with those produced by high-
resolution LES and/or SCM output. Here the focus is
on high-level parameters such as A, fc, and CRE, but
more detailed comparisons at the level of L, τ, re, Na,
and surface fluxes provide further physical consis-
tency checks. The LES and SCM are driven, on a
routine basis, by realistic initial conditions that cap-
ture the natural covariability of aerosol and mete-
orology. Systematic improvements in SCMs provide a
pathway to improved AGCM physics so that climate-
relevant present-day (PD) minus preindustrial (PI)
calculations can be performed. AGCMs run in hindcast
mode with the same input conditions can also be used.
CAPT, Cloud-Associated Parameterizations Testbed
(39); VA, Variational Analysis; RGCM, Regional General
Circulation Model.
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Numerical simulation of warm cloud systems has been used to
demonstrate that the manifestation of aerosol effects on A and
fc depends on the covariability of meteorology and aerosol. We
note, however, that, even when aerosol effects on albedo at con-
stant fc are overwhelmed by other factors (e.g., Fig. 4), aerosol
effects on precipitation may still provide a strong control on A
and fc (34), and this avenue for the radiative effect of the
aerosol still appears to be pivotal. The (A, fc) trajectories have
been shown to be relatively robust, but they show some sensi-
tivity to covariability of initial conditions, meteorological re-
gime, and averaging scale. Their scaling properties therefore
deserve attention. They are also sensitive to the definition of fc
(Fig. 2 and Supporting Information), an issue raised in various
other works (42). Analyses should therefore always be associ-
ated with clear criteria for definition of fc.
We amplify the call for routine LES driven by observed si-

multaneously varying meteorological and aerosol conditions to
clarify the relationship between covariability in aerosol and mete-
orology and the (A, fc, CRE) phase space in a process model
framework. Current efforts at elucidating this relationship rely on
reanalysis (21, 22), and although the latter approach is valuable at
the regional circulation scale, reanalysis is not reliable enough at the
cloud scale. Model−observation comparison at the level of indi-
vidual microphysical and macrophysical responses to the aerosol
(Eq. 2) will provide further confidence in the fidelity of simulations.
As noted elsewhere (37), routine LES provides a mechanism

to rigorously evaluate models against a desired set of output

parameters. Successful simulations (based on prescribed toler-
ances) form an observationally constrained model output, which
could be used for multiple other analyses similar to the various
Model Intercomparison projects.
One of the tenets of the merging of Newtonian and Darwinian

worldviews somewhat neglected here is the development of
simple models. This merging is itself recognition of the imper-
fection of Popper’s “clocks.” Lorenz’s model (23) epitomizes the
merged approach because it not only captures the spirit of the
merging but also highlights the imperfection of the clock through
its identification of sensitivity to initial conditions. Statistical
emulator models are far from simple, and do not provide process
level understanding like a simple model does. However, when
designed with, and driven by, the appropriate regime-based con-
ditions, they may be an expedient and pragmatic tool for filling in
gaps and extending our ability to represent the aerosol−cloud
system in different regimes. Simple, transparent models (8, 43)
should be considered in parallel.
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